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A joint distribution of a set of observables on a quantum logic in a state 
m is defined and its properties are derived. It is shown that if the joint 
distribution exists, then the observables can be represented in the state m 
by a set of commuting operators on a Hilbert space. 

1. I N T R O D U C T I O N  

For  the study of  simultaneous measurements of  a set of  observables the 
notion of  their joint distribution is very important.  Joint distributions of  
observables were studied by several authors, e.g., Moyal (1949), Urbanik 
(1961), Varadarajan (1962), Margenau (1963), Gudder  (1968). 

For  the case of  the logic L(H), i.e., the set of  all dosed subspaces of  
a complex separable Hilbert space H, Urbanik (1961) and Varadarajan (1962) 
defined joint distributions in the following way. We define/z r,~ on B(R) as 

I~"*(E) =/~{(tl, t2): rtl + st2 ~ E} 

where E ~ B(R), (r, s ) ~  R 2 and /z is a Borel measure on B(R2). We shall 
say that the observables x, y have a joint distribution in the state m if there 
is a Borel measure/Zm on B(R 2) such tha t / z~(E)  = m[(rx + sy)(E)] for all 
(r, s) ~ R 2 and E ~ B(R). Joint distributions of  this type are called "type-2 
joint distributions" (Gudder, 1968). 

Another  type of  joint distributions--"type-1 joint distr ibutions"--was 
defined by Gudder  (1968) in the following way. We say that x and y have a 
type-1 joint distribution in a state m if there is a two-dimensional Borel 
measure mx,y such that mx.~(E x F) = m[x(E) ^ y(F)] for all E, F E B(R), 
and we call m~.~ the joint distribution of  x and y in the state m. Gudder  
considered a sum logic in that x(E) ^ y(F) exists for any E, F E B(R). 
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In the present paper another type of joint distribution is defined and 
some of  its properties are derived. This definition is close to that of  the type-2 
joint distributions, but a wider class of  functions of  x and y is considered. 

2. LOGICS,  STATES, OBSERVABLES 

Let L be a partially ordered set with the first and last elements 0 and t, 
respectively, which is dosed under a complementation a ~ a '  satisfying 

(i) (a') '  = a, 
(ii) a ~< b implies b' ,N< a' .  

We denote the least upper bound and greatest lower bound of a, b ~ L, 
if  they exist, by a v b and a A b, respectively, and assume 

(iii) a v  a ' =  l f o r a l l a s L .  

We say that a, b e L are disjoint and write a 2_ b if a ~< b'. We say that 
a, b ~ L are compatible and write a+--~ b if there exist mutually disjoint ele- 
ments al,  bl, c ~ L such that a = al  v c and b = bl v c. We call L a logic 
if  it also satisfies 

(iv) v a~ e L for any disjoint sequence {ai} c L, 
(v) if  a, b, c e L are mutually compatible, then a ~ b v c. 

(vi) a ~ < b i m p l i e s b = a v  (bA a'). 

A state is a nonnegative function m on L satisfying 

(i) m ( 1 ) =  1, 
(ii) m(v  a~) = Y~ m(a~) for any disjoint sequence {a~} c L. 

A set M of  states is full if  m(a) <~ m(b) for all m e M imply a ~< b, a, b E L. 
We shall call the couple (L, M),  where L is a logic and M is a convex 

full set of  states, the quantum logic. We shall in addition suppose that  to 
any a e L, a ~ 0, there is an m ~ M such that m(a) = 1. 

An observable x is a cr-homomorphism from the Borel sets B(R) of  the 
real line R into L. A collection of  observables {:ca: A ~ A} is compatible if  
x~(E) +-* x,(F) for all E, F ~ B(R) and A,t~ ~ A. I f  x is an observable and u 
is a Borel function on R, we define the observable u(x) by u(x) (E)= 
x[u- I(E)] for all E ~ B(R). I f  ~b is an n-dimensional Borel function on R, 
we define the observable ~b(ul(x) . . . . .  u~(x)) by ~b(ul(x) . . . .  , u~(x))(E)= 
x{t: ~b(u~(t) . . . . .  u,(t)) ~ E}, E ~ B(R). The spectrum o(x) of  an observable 
x is the smallest closed set E such that x(E) = 1. An observable x is bounded 
if or(x) is bounded. The expectation of  an observable x in the state m is 

= f Am[x(da)] m(x) 
d 
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if  the integral exists. The probabil i ty measure mx(E) = m[x(E)], E e B(R) 
is called the distribution o f  x in the state m. A n  observable x is a proposi t ion 
observable if  a(x) = {0, 1). The following statements are equivalent (Mackey,  
1963): 

(i) x is a proposi t ion observable, 
(ii) x is a characteristic function o f  an observable, 

(iii) x is an idempotent,  i.e., x 2 = x. 

Let XL be the set o f  all proposi t ion observables on L. We define a partial 
orderihg on XL by setting that  x ~< y if  re(x) <~ re(y) for  all m e M and an 
or thocomplementa t ion  by setting x '  = f ( x ) ,  where f ( t )  = 1 - t, t e R. To 
each a e L  there is an observable xa e XL such that  xa{1} = a. The map 
a ~ x~ f rom L onto  XL is an isomorphism. 

Let X be the set o f  all bounded  observables on L. We say that  z e X 
is the sum of  x and y f rom X if re(z) = re(x) + re(y) for all m e M. In  this 
case we write z = x + y. We shall suppose that  x + y exists for  all x, y e X 
and  that  it is unique, so that  m(x) = m(y)  for  all m e M implies x = y 
(Gudder ,  1966). Let  us denote by I the unique observable on L such that  
re(I) = 1 for  a l l m e M .  

3. JOINT DISTRIBUTIONS OF OBSERVABLES 

The set X o f  all bounded  observables on the quan tum logic (L, M )  
is d o s e d  under  the format ions o f  bounded  functions o f  observables and it is 
supposed to be dosed  under  the format ions o f  sums of  observables. 

Let  x~ . . . . .  xk e X. Let us denote by S(x l  . . . . .  x~) the smallest subset 
o f  X d o s e d  under  the formations o f  sums and bounded  Borel functions o f  
observables which contains x~ . . . .  , xk and the identity observable L Let 
y e S ( x t , . . . ,  xk) be o f  the fo rm y = f (xx  . . . .  , xk), where f is a " func t ion"  
o f  x ~ , . . . ,  xk, L f can be o f  the fo rm 

k 

f ( x l ,  . . ., xk) = CoI+ E x,c,, Co, ct . . . .  , ck e R 
~=1 

o r  

f ( x l , . . . , x e )  = g(coI  + ~=~" c~x~) 

etc. Let us denote by f ( t l  . . . . .  t~) the funct ion 3r: R ~ ---> R obtained f rom f 
by replacing xl  . . . . .  xk by real numbers  t l , .  �9 tk. 
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Definition 1. We shall say that  the observables xl  . . . .  ,x~ ~ X have a 
joint  distribution in a state m ~ M if there is a measure t~ on B(R k) such that  
for  any y = f ( x l , . . . ,  xk) E S(x l , . . . ,  x~) we have 

= f a/tf- m( y) l(d~) 

and we shall call/~ the joint  distribution o f  x l , . . . ,  xk in the state m. 

I f  t~ is the joint  distribution o f  x l , . . . ,  xk in a state m, then 

rail(x1 . . . .  , xk)(E)] = m{xE[f(xt . . . .  , x~)]} = f '~/~(xEf)-t(agt) 

= ~ [ l - ~ ( e ) ]  

Theorem 1. Let the joint  distribution exist for  the observables 
x, y e X in the state m. Then tt(E x F)  = m[x~(x) o Xr(Y)] for  all 
E, F ~ B(R), where o denotes the pseudoproduct  defined by u o v = 
�88 + v) 2 - (u - v)~], u, v E x .  

Proof. 

xE(X) o Xv(Y) = ~[X~(x) + Xv(y)] 2 - [XE(x) -- XF(Y)] 2} E S(x, y) 

so that  

m[XE(X) o Xv(Y)] = f ~{[xg(tl) + xr(t2)] 2 - [XE(t0 - xv(t2)] 2} dtt(tl, tz) 

= f x~(tOx,(t~) dt,(t~, t~) = f x~x~(t~, t~) d~ 

= t,(e x F) 

Corollary. I f  the joint  distribution o f  x, y in the state m exists, 
then it is uniquely defined. 

Proof. The set function defined b y / t ( E  x F)  = m[XE(X) o Xv(Y)] on all 
rectangle sets E x F ~ B(R 2) can be uniquely extended to a measure/~ on 
B(R 2) (Halmos,  1974). 

Theorem 2. The observables x, y e I have a joint  distribution in 
each state m ~ M if and only if  they are compatible. 
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Proof. Let x+-*y, then there exists a a homomorph i sm z: B(R 2) --->L 
such that  

x(E) = z[wi- I(E)I, y(E) = z[w~ I(E)] 

where %, ~r2 are the projections ~rt(tol, oJ2)= to~, i = 1, 2 (Varadarajan, 
1962). Fo r  any measurable functionf(oJ1, to2) we have 

f ( x ,  y)(E) = f(rq(z), ~r2(z))(E) 

= z{co = (%, oJ2):f(%(oJ), ~'2(co)) ~ E} 

= z{co :f( tol ,  to2) ~ E} = z [ f -  I(E)], E ~ B(R) 

F o r  any m ~ M then re[f (x, y)] = rail(z)]  = hm~f-l(dA), where m,(E) = 
m[z(E)], so that  /zE = m~(E), E r  B(R2), is the joint  distribution in the 
state m. 

N o w  let joint  distributions exist in all m e M. For  m E M, let/~m be the 
joint  distribution. Then 

/~m(E x F)  = m[xE(x ) o Xv(Y)] 

on all rectangles E x F ~ B(R2). First we shall show that  Xs(x) ~ Xv(Y) is a 
simple observable, i.e., that  

[xs(x) o Xv(y)] 9' = Xs(x) o Xv(Y) 

Indeed, 

where 

so that  

m{[x~(x) o x~(y)]~} = f h~mf-~(dA) 

l(t~, t~) = [x~(t~) o x~(t~)] ~ = x ~  ~(t~, t~) = x ~ ( t l ,  t~) 

F 
m { [ x ~ ( x )  o X, (y ) ]  ~} = J x . ,  F(tI~ t2) d~m(tl, t2) 

= ~(E x F )  

= m[x~(x) o x~(y)] 
F r o m  this it follows that  

[X~(x) o Xv(y)] 2 = XE(X) o Xv(Y) 

N o w  let E x F n G x H = ~a , E, F, G, H ~ B(R). Then for any m ~ M, 

m[xs(x) o Xv(Y) + Xa(X) o Xn(Y)] = f ~/~mf- l(dA) 
J 
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where 

f ( t l ,  t2) = xE(tl)gv(ta) + xo(tz)xu(t2) = xEx v(tl, ta) + Xa x u(tl, t2) 

= X E  ~ v v o  ~ H(tl, t2) 

We can show as above that XB(X) o XF(Y) + Xo(X) o XH(Y) is an idempotent. 
But then 

XE(x) o Xv(Y) + Xa(x) o Xz~(Y) = XE(x) o Xv(Y) v Xa(x) o X,(Y) 

(Gudder, 1966). Clearly, 

m[xs(x) o X,(Y) + xa(x) o X~(Y)] =/zm(E x F v G x H )  

Let ~r be the algebra consisting of  all finite disjoint unions of  measurable 
rectangles in R 2. Let us define 

whereEt  x FinE~.  x F j = ~  f o r i r  1,2 . . . .  ,n .  I f  

O Et x F t =  E x F 
t = 1  

where Et x Ft n Ej x F~ = ~ for i ~ ], then 

~ = 1  

where 

Thus 

f ( t l ,  t2) = Xs,(tl)xg,(ta) = XE,(tl)xr,(t=) 
t = 1  = 

= X ~ ~,  • r , ( t~ ,  t2)  = XE ~ F(t~,  ta) 
( = 1  

m h(gt  x F, = m[h(g~ x F3] = ~m(E x F)  = m[h(g x F)] 

for all m e M. From this it follows that 

h(Ei • F,) = h(E • S) 
~ = 1  

i.e., h is a o homomorphism from d to L. As 

h ( ~  x R )  = x~(x) o x~(Y) = x~(x) o I = x R x )  



Joint Distributions of Observables 671 

and analogically, h(R x F ) =  XF(Y), we get that  XE(X)~--~ XF(Y) for  all 
E, F e B ( R ) ,  i.e., x~-~ y. 

Theorems 1 and 2 can be generalized to any finite set o f  bounded  
observables. For  any indexed set o f  observables we can define the following. 
A n  indexed set {xa, ~ ~ A} o f  bounded  observables will be said to have a 
joint  distribution in a state m if for  any k and h ~ , . . . ,  hk ~ A, x ~ , . . . ,  x ~  
have a joint  distribution in the state m. 

N o w  we shall show that  f rom the existence o f  a joint  distribution in a 
state m it follows that  the observables have a compatibil i ty property relative 
to the state m. To  show this we need a definition and a lemma. 

Definition 2. Let  x, y ~ X and m ~ M. We shall say that  x = y modulo  m 
and write x = y[m] if  m[(x - y)2] = 0. 

F r o m  the Schwarz inequality it follows that  

[m(x - y)]a ~< m[(x -- y)2] 

so that  x = y[m]implies m(x) = m(y). 
Let x~ . . . . .  xk ~ X have a joint  distribution in a state m. Let x, y, z e 

S(xl  . . . . .  xk) such that  

r e ( x ) =  f htzf?~(d2), r e ( y ) =  f m(z )=  f 2tzfff~(dh) 

Then 

m([(x o y)  o z - x o (y  o z)] 2) = 0, m([(x + y)  o z - (x o z + y o z)] 2) = 0 

m([(~x) o y - ~(x o y)]2) = 0 

for  any = ~ R. Thus we get the following statement. 

Lemma 1. I f  the observables xl  . . . .  , xk have a joint  distribution 
in the state m, then the pseudoproduet  o is associative, distributive 
(relative to addition), and homogeneous  (relative to scalar multi- 
plication) modulo  m on all f ( x l  . . . . .  x~) ~ S(xx . . . .  , x~). 

Theorem 3. Let xl  . . . . .  xk e X and m ~ M. Let So be the smallest 
subset o f  X dosed  under  the formations o f  finite linear combina-  
t ions and pseudoproducts  o f  observables which contains xl  . . . . .  x~ 
and L Let the pseudoproduct  be distributive, associative, and 
homogeneous  on So modulo  m, i.e., if  x, y, z e So, ~ ~ R, then 

m{[(x + y)  o z - (xo  z + y o z)] 2} = 0 

m{[(~x)  o y - ~ ( x o  y)]2} __ 0 

m { [ ( x  o y )  o z - x o ( y o  z)]  ~} - -  0 
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Then there is a real Hi lber t  space H and a m a p  x ~ ~rx f rom So 
into the set B(H) of  all bounded  opera tors  on H such that  zrx% = 
%~r~ for  all x, y ~ So, and re(x) = (40, ~r~o) for  all x ~ So with a 

r  

Proof. Let a, fl ~ R. F r o m  the distributivity modulo  m we have 
m[(ax + fly)2] = a2m(x 2) + ~2rn(y2 ) + 2a~m(x o y) >1 0 

i.e., 
~2 0g 

m(x a) + 2 ~  m(x o y) + m(y 2) >i 0 

F r o m  this we get 
[m(x o y)]2 ~< m(x2)m(y2) 

Then 
m[(x + y)2] ~< {[m(xa)]ll2 + [rn(y2)]lt2}2 

i.e., [m(x2)] 1/2 is a seminorm on the linear space So. Let  us write x ~ y 
whenever  m[(x - y)2] = 0 and  replace So by the set ~o of  all equivalence 
classes with respect to the relation ~ .  Let  [x] ~ ~o be the class containing 
x ~ So. We define addit ion and mult ipl icat ion on So by a[x] + fl[y] = 
[ax + Ely] and [x][y] = [x o y]. These operat ions do not  depend on the 
choice o f  the representants.  Indeed,  let xl ,  x2 ~ [x] and y~, Y2 ~ [Y]. Then  

{m[(xz + y , )  - (x2 + y2)]=} */2 ~< {m[(x, - x2)2]} ~/= + {m[(yl - y2)21} ~/= = 0 

and  

{m[(xt o y~ - x2o y2)S]} lt~' = {m[(xl - x2) o y l  + x~o (y~ - y2)]2} ~/2 

< (m[(xl - x2)o 

+ (re[x2 o (y~ - y2)]2} ~12 

~< (m[(xl - x2)4]m(yl~)} 11~ 

+ {m(x24)m[(yt - y2)']} ~ = 0 

because m(x ~) = 0 implies mx({0}) = 1, so that  

f A4m~(dA) = 0 /~(X ~) 
d 

Then  So with the operat ions + and o is a commuta t ive  real algebra. Fur ther  
we shall proceed by the Ge l f and -Na imark -Sega l  construct ion (Na imark ,  
1968, w 17). The  map  [x], [y] ~ (Ix], [y]) = m(x o y) is a symmetr ic  linear 
functional  on ~o and m(x 2) = 0 iff [x] = 0. The  funct ion (Ix], [y]) with 
[x] and [y] ranging over  ~o has the usual propert ies  of  an inner product .  
Next ,  So can be completed to a real Hi lber t  space H relative to the given 
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inner product .  Fo r  x e So, we set ,r~ ~ for  the opera to r  on ~o defined by  
,r~~ = [x o y]. Let  x ~ So, then 

Ilxll = sup {Im(x)l  : m ~ M }  = sup {t: t E o(x)}  

and ~ x  2) = [cr(x)] 2 implies tha t  Ilx~ll = llxll ~ (Gudder ,  1965). Then  for  all 
m' e M,  m'([[xllV - x 2) >1 O, so tha t  there is a z ~ X such tha t  z 2 = l lxll~I - 
x z. F r o m  this it follows tha t  

m [ y 2 o  ( l l x [ l ~ / -  x~)] -- m(y2o  z 2) >~ 0 
i.e,s 

so tha t  
m ( y  2 o x a) <<. [Ix[l~m(y~) 

II~rx~ 2 = s u p  b r f [ Y ] [ ] ~  = s u p  m[(x  o y)21 
m I [ [ y l P  ~ m ( y  2) <<'Hxl[2 

Thus  r ~ can be uniquely extended to an opera tor  on H.  Let  us denote  by  
~rx this extension. N o w  let x, y, z e So and a, f l e  R, then 

,~x,~[z]  = ,~x[y o z] = [x o y o z] = ,~x.~[z] = ,~ .~[z ]  = ,,~,~x[z] 

�9 , ~ + ~ [ z ]  = [(,~x + ~ y )  o z] = ~ [x  o z] + t~[y o z] = ~ , , A z ]  + t~,~[z] 

so tha t  w ~ + ~  = awx + fl,r~ and  w~  = ~r~% = 7r~r~. Let  ~o e H be the 
class [I]. Then  (~o, , r~o )  = m(I  o x)  = m(x)  for  all x e So. 

In  the following theorems we shall t reat  the relat ion between our  jo in t  
distr ibutions and the t y p e d  joint  distr ibutions (Gudder ,  1968). 

Theorem 4. I f  x +-* y, then xg(x) o XAY) = Xg(X) A XF(Y). 

Proof. x*--~ y implies tha t  there is an observable u and  real Borel func- 
t i o n s f l , f a  such tha t  x = f~(u), y = f2(u) (Gudder ,  1965). Then  

x R x )  o x~ (y )  = x~U'~(u)) o x~U'~(u)) = x , ; l ~ ( u ) x , ;  lc~(u) 

= xr ;  lc~(u) ^ xr;Ic~)(u) = x R x )  A X R Y )  

F r o m  Theorems  1, 2, and 4 it then follows tha t  for  compat ib le  ob- 
servables bo th  jo int  distr ibutions exist and  are identical. 

A logic is quite full i f  the s ta tement  re(b) = 1, whenever  m(a) = 1 
implies the s ta tement  a ~< b, a, b ~ L (Gudder ,  1966). 

Theorem 5. Let  x, y be bounded  observables on a quite full logic. 
I f  the jo in t  distr ibution in a state m exists, then /~(E x F )  = 
t4x(E)  ^ y(F) I ,  E, F e B(R). 
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Proof I f  the joint distribution exists, then 

m[(xg(x) + Xe(y)]{2})= tz([xE(tl) + xv(t~)]-l{2}) 

--- tz{(tl, t2):X~(q) + xv(t2) = 2} =/~(E x F)  

On the other hand, on a quite full logic, 

[XE(X) + XF(y)]({2}) = x(E) A y(F) 

(Gudder, 1966), so that m[x(E) /~ y(F)] = / z (E  x F). 

Theorem 6. Let L(H)  be the logic of all closed subspaces of a com- 
plex separable Hilbert space H. If  the type-1 joint distribution 
exists for the observables x, y in a state m, then 

/~(E x F) = mix(E) A y(F)] = m[x(E)o y(F)] 

Proof Any state m on L(H)  can be written in the form m = ~ r,(r ~b,), 
where {d&} is an orthonormal set of  vectors in H and r, /> 0, ~ r~ = 1. 
Gudder (1968, Theorem 3.7) has proved that the type-1 joint distribution 
exists if and only if  x(E)y(F)(O, = y(F)x(E)Cb,, E, F e  B(R), i = 1, 2 , . . . .  
Then x(E)y(F)C~ = y ( F ) x ( E ) ~  = x(E) ^ y(F)r so that m[x(E)/~ y(F)] = 

&((I)~, x(E) A y(F)r  = Y. r~(d&, x (E)y(F)r  = ~ r,(d&, x(E) o y(F)dg,) = 
m[x(e)  o y(F)]. 

We note that from the existence of a measure/ ,  defined by/z(E • F)  = 
m[xE(x) o X~(Y)], E, F e B(R) it need not follow, in general, that there is a 
joint distribution in the sense of Definition 1. 

Theorem 7. Suppose that x and y are self-adjoint operators with a 
pure point spectrum. Let $~, i = 1, 2 , . . .  be the common eigen- 
vectors of  x and y. Then there exists a joint distribution of  x and y 
in the state m = Z r,(r ~,). 

Proof Let At, tz~ be the eigenvalues of x and y, respectively, correspond- 
ing to the eigenstates ~b~, i = 1, 2 , . . . .  Then 

f(x)d~, = f(a,)@,, (x + y)r  = (,~, + t~,)r 

for any Borel function f ,  so that 

f ( x ,  y)qb, = f(h,, tz,)r 

for eachf(x ,  y) e S(x, y). Let us define the measure ~ by 

I~(G) = ~,  {&: (h~, I~) e G}, G e B(R 2) 
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Then 

m[x(E) o y(F)1 = m[x(E) ^ y(F)1 = ~ {r,: (h ,  t',) e E x F} = t~(E x F)  

and  

m[f(x,  y)] = ~ r, f0~,, tz,) = Jsf~ f ( h ,  t2) dlz(tl, to) 
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