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A joint distribution of a set of observables on a quantum logic in a state
m is defined and its properties are derived. It is shown that if the joint
distribution exists, then the observables can be represented in the state m
by a set of commuting operators on a Hilbert space.

1. INTRODUCTION

For the study of simultaneous measurements of a set of observables the
notion of their joint distribution is very important. Joint distributions of
observables were studied by several authors, e.g., Moyal (1949), Urbanik
(1961), Varadarajan (1962), Margenau (1963), Gudder (1968).

For the case of the logic L(H), i.e., the set of all closed subspaces of
a complex separable Hilbert space H, Urbanik (1961) and Varadarajan (1962)
defined joint distributions in the following way. We define p™* on B(R) as

,lLT's(E) = [.L{(t]_, tz): rt]_ + St2 GE}

where E e B(R), (r,s) € R? and p is a Borel measure on B(R?). We shall
say that the observables x, y have a joint distribution in the state m if there
is a Borel measure y,, on B(R?) such that u5;%(E) = m{(rx + sy)(E)] for all
(r, s) € R? and E € B(R). Joint distributions of this type are called “type-2
joint distributions” (Gudder, 1968).

Another type of joint distributions—"“type-1 joint distributions”—was
defined by Gudder (1968) in the following way. We say that x and y have a
type-1 joint distribution in a state m if there is a two-dimensional Borel
measure m, , such that m, (E X F) = m[x(E) A y(F)] for all E, Fe B(R),
and we call m, , the joint distribution of x and y in the state m. Gudder
considered a sum logic in that x(E) A y(F) exists for any E, F € B(R).
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In the present paper another type of joint distribution is defined and
some of its properties are derived. This definition is close to that of the type-2
joint distributions, but a wider class of functions of x and y is considered.

2. LOGICS, STATES, OBSERVABLES

Let L be a partially ordered set with the first and last elements 0 and 1,
respectively, which is closed under a complementation a > a’ satisfying

@ @) =a, '

(i) a < bimplies b’ < a'.

We denote the least upper bound and greatest lower bound of @, b e L,
if they exist, by @ v b and a A b, respectively, and assume

(iii) ava =1forallaclL.

We say that a, b € L are disjoint and write @ |_ b if a < b’. We say that
a, b e L are compatible and write a<> b if there exist mutually disjoint ele-
ments a,, by, ce L such that a = a, v cand b = b, v ¢. We call L a logic
if it also satisfies

(iv) Vv a; €L for any disjoint sequence {@;} < L,
(v) if a, b, c € L are mutually compatible, then a<> b v c.
(vii a<bimpliesb=av (b A ).

A state is a nonnegative function m on L satisfying

@® m() =1,

i) m(v a) = 2, m(a) for any disjoint sequence {a;} < L.

A set M of states is full if m(a) < m(b) for all me M imply a < b, a,be L.

We shall call the couple (L, M), where L is a logic and M is a convex
full set of states, the quantum logic. We shall in addition suppose that to
any a€ L, a # 0, there is an m € M such that m(a) = 1.

An observable x is a e-homomorphism from the Borel sets B(R) of the
real line R into L. A collection of observables {x,: € A} is compatible if
X\(E)«> x,(F) for all E, Fe B(R) and A,pe A, If x is an observable and «
is a Borel function on R, we define the observable u(x) by u(x)}(E) =
x[u=*(E)] for all Ee€ B(R). If ¢ is an n-dimensional Borel function on R,
we define the observable ¢(u(x),..., u,(x)) by (u(x),..., w,(X)NE) =
x{t: P(uy(2), . . ., u(t)) € E}, E € B(R). The spectrum o(x) of an observable
x is the smallest closed set E such that x(£) = 1. An observable x is bounded
if o(x) is bounded. The expectation of an observable x in the state m is

m(x) = J Amix(@N)]
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if the integral exists. The probability measure m, (E) = m[x(E)], E € B(R)
is called the distribution of x in the state m. An observable x is a proposition

observable if o(x) < {0, 1}. The following statements are equivalent (Mackey,
1963):

(i) xis a proposition observable,
(ii) x is a characteristic function of an observable,
(iii) x is an idempotent, i.e., x> = x.

Let X}, be the set of all proposition observables on L. We define a partial
ordering on X; by setting that x < y if m(x) < m(y) for all me M and an
orthocomplementation by setting x’ = f(x), where f(¢) =1 — t, ¢ R. To
each acL there is an observable x, € X; such that x, {1} = a. The map
a+> x, from L onto X is an isomorphism.

Let X be the set of all bounded observables on L. We say that ze X
is the sum of x and y from X if m(z) = m(x) + m(y) for all m € M. In this
case we write z = x + y. We shall suppose that x + y exists forall x, ye X
and that it is unique, so that m(x) = m(y) for all me M implies x = y
(Gudder, 1966). Let us denote by I the unique observable on L such that
m(I) = 1forallme M.

3. JOINT DISTRIBUTIONS OF OBSERVABLES

The set X of all bounded observables on the quantum logic (L, M)
is closed under the formations of bounded functions of observables and it is
supposed to be closed under the formations of sums of observables.

Let x,,..., x, € X. Let us denote by S(xy,..., x;) the smallest subset
of X closed under the formations of sums and bounded Borel functions of
observables which contains x,,..., x; and the identity observable I. Let
y€S(X4,...,x;,) be of the form y = f(xy, ..., x,), where f is a “function”
of x4, ..., X, I. f can be of the form

K
S, X)) = ¢l + Z XiCis Cos C15 -+ -5 CL ER
i=1

or
K
S, X)) = g(col + Z cixi)
i=1

etc. Let us denote by f(,, . . ., t,) the function f: R* — R obtained from f
by replacing x;, . . ., X; by real numbers #,,. . ., .
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Definition 1. We shall say that the observables x;,...; x, € X have a
joint distribution in a state m € M if there is a measure p on B(R*) such that
for any y = f(x,..., X)) € S(xq, ..., X;) we have

m(y) = [ s (@)

and we shall call p the joint distribution of xi, ..., x; in the state m.

If p is the joint distribution of x4, ..., X, in a state m, then

el e - -, %]} = f Axaf) =)

m[f(xls R ] xk)(E)]

= [ M3 @) = [ xe
= ulf(®)]

Theorem 1. Let the joint distribution exist for the observables
x,y€ X in the state m. Then w(E x F) = m[xz(x) o xz()] for all
E, Fe B(R), where - denotes the pseudoproduct defined by uov =
Hw + 0 - (u—0PLuveX

Proof.

xe(X) ° xe(¥) = Hlxs(x) + xz(WFP — [xe(x) — %P} € S(x, y)
so that

mlxss) o o] = [ Hoxs(t) + Xe(t)? = Deat) = xe(t)l? dites, 1)

= fXE(tl)XF(tZ) du(ty, t;) = J‘XEXF(tls ty) dp

= WE x F)

Corollary. If the joint distribution of x,y in the state m exists,
then it is uniquely defined.

Proof. The set function defined by u(E x F) = m[yz(x) ¢ x(»)] on all
rectangle sets E x F e B(R?%) can be uniquely extended to a measure g on
B(R?) (Halmos, 1974).

Theorem 2. The observables x, y € X have a joint distribution in
each state m € M if and only if they are compatible.
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Proof. Let x<> y, then there exists a ¢ homomorphism z: B(R?) - L
such that

XE) = z[nt ME)),  y(E) = z[=z {(E)]

where m;,m; are the projections mw;, wy) = w;, i = 1,2 (Varadarajan,
1962). For any measurable function f(w,, w,) we have

S, YUE) = f(ry(2), moDNE)
= z{w = (v, @y): fm(w), my(w)) € E}
= z{w: flw,, w) € E} = z[f~H(E)], E € B(R)

For any me M then m[f(x, y)] = m[f(2)] = Am,f ~(d)), where m(E) =
m[z(E)], so that uE = m(E), E € B(R?), is the joint distribution in the
state m.

Now let joint distributions exist in all m € M. For m € M, let p,, be the
joint distribution. Then

pn(E X F) = mfxg(x) o xs(y)]

on all rectangles E x F e B(R?). First we shall show that xz(x) o x-(y) is a
simple observable, i.e., that

[xz(x) ° xe(MP = x&(x) © x#(¥)

Indeed,
m{lxs) o xeOIP = [ N =)
where
f(t1, 1) = [xaty) © xelt)P = xR <#(t1, 1) = Xex#(ts, t2)
so that

m{[xz(x) o (WP} = f Xe x #(t1, t2) dun(ts, 12)

= l"'m(E X F)
= m[xz(x) o xr(»)]
From this it follows that

[xz(x) o x#(MP? = x&(x) o x(¥)
Nowlet Ex FNG x H= g, E, F,G, He B(R). Then for any me M,

mlxa(x)  x:(¥) + x(¥) © xu(¥)] = f W STEN
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where
At 1) = xet)xw(t) + xe(t)xuts) = xpxpltss 1) + Xoxults, 1)
= Xgxrugxa(tis l2)

We can show as above that yz(x) o xs(¥) + xe(x) o xz(») is an idempotent.
But then

xe(x) o xr(¥) + x6(%) o xu(¥) = x6(x)  xe(») V x6(x) o xu(¥)
(Gudder, 1966). Clearly,

mxe(x) o xr(¥) + x6(x) ° xa(M)] = pulE X FU G x H)

Let o7 be the algebra consisting of all finite disjoint unions of measurable
rectangles in R2, Let us define

n n
W B x £) = V6 xe)
where E; x FNE; x F;=g fori#j,i,j=12,...,nIf
\UJEx FF=ExF
i=1
where E; x F;N E; x F; = @ for i # j, then

21 mlh(E; x F)] = m[‘\z X&(x) o XF(.V)] = f A f=1(dN)

where
a0 -]
Fln ) =\ xetxe(t) = D xe(t)xeta)
i=1 i=1
= X‘§1 Eixrt1s t2) = Xexrp(ty, 12)
Thus

m(\/ WE x F)) = 3 miEs x )] = (B x F) = miKE x P}
i=1 i=1
for all m € M. From this it follows that

\/ WE; x F) = h(E x F)

i=1

i.e., b is a ¢ homomorphism from &7 to L. As
h(E % R) = xg(x) o xa(p) = xe(x) o I = xx(x)
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and analogically, A(R x F) = x(y), we get that yxg(x)<> xz(y) for all
E,Fe B(R),ie., x<»y.

Theorems 1 and 2 can be generalized to any finite set of bounded
observables. For any indexed set of observables we can define the following.
An indexed set {x,, A € A} of bounded observables will be said to have a
joint distribution in a state m if for any k and Ay, ..., A, €A, Xy, .. -, Xnp
have a joint distribution in the state m.

Now we shall show that from the existence of a joint distribution in a
state m it follows that the observables have a compatibility property relative
to the state m. To show this we need a definition and a lemma.

Definition 2. Let x, y € X and m € M. We shall say that x = y modulo m
and write x = y[m] if m{(x — y)?] = 0.

From the Schwarz inequality it follows that
[m(x — M < ml(x — y)°]
so that x = y[mlimplies m(x) = m(y).
Let x;,..., x; € X have a joint distribution in a state m. Let x, y,z €
S(xy, ..., x;) such that
me) = [ M@, m0) = [ M@, me) = [ i
Then
m{(xoy)oz—xo(yo2)) =0, m(x+y)oz—(xoz+y-z)P)=0
m([(ex) oy — e(x o y)PP) = 0

for any o € R. Thus we get the following statement.

Lemma 1. If the observables xy,..., x; have a joint distribution
in the state m, then the pseudoproduct o is associative, distributive
(relative to addition), and homogeneous (relative to scalar multi-
plication) modulo m on all f(xy, ..., x) € S(xy, . - ., Xu).

Theorem 3. Let xy,...,x,€ X and me M. Let S, be the smallest
subset of X closed under the formations of finite linear combina-
tions and pseudoproducts of observables which contains x;, ..., x;
and I. Let the pseudoproduct be distributive, associative, and
homogeneous on S, modulo m, i.e., if x, y, z€ S,, « € R, then

m{(x + y)ez—(xoz+ye2)} =0
m{{(ex) oy — e(x o p)]*} =0
m{[(xoy)oz —x0(yoz)PP} =0
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Then there is a real Hilbert space H and a map x+> =, from S,
into the set B(H) of all bounded operators on H such that =7, =
mym, for all x,y € .S,, and m(x) = (Py, matho) for all xS, with a
¢o € H.

Proof. Let o, B € R. From the distributivity modulo m we have
ml(ex + )] = o2m(x?) + Bm(y?) + 2afm(x o y) > 0
ie.,
[+

B—zm(xa) +2

gm(xoy) +m(y?) > 0

From this we get
[m(x o )P < m(x*)m(y%)
Then
ml(x + y)*] < {ImGAI? + [m(y?)]"2)

i.e., [m(x®)]2 is a seminorm on the linear space S,. Let us write x ~ y
whenever m[(x — y)2] = 0 and replace S, by the set S, of all equivalence
classes with respect to the relation ~. Let [x] € S, be the class containing
x€ S,. We define addition and multiplication on S, by «[x] + B[y] =
[ex + By] and [x][y] = [x o y]. These operations do not depend on the
choice of the representants. Indeed, let x;, x; € [x] and y,, y, € [y]. Then

{ml(x1 + y1) — (x2 + Y2 < {m(x, — %’ + {ml(3: — y2' P2 =
and
{m(xy 0 y1 — x50 po*I1'? = {ml(x1 — X2) o y1 + x50 (y1 — yI)P}P2
< {mlGey — x3) 0 3, P}
+ {mlxy o (y1 — y)P}'2
< {ml(x; — xg)*m(y, )M
+ {m(xa)ml(y, — ya)* P =0

because m(x?) = 0 implies m,({0}) = 1, so that

m(x?) = f Am(dh)y =0

Then S, with the operations + and o is a commutative real algebra. Further
we shall proceed by the Gelfand—Naimark-Segal construction (Naimark,
1968, § 17). The map [x], [y]+—> ([x], [¥]) = m(x o y) is a symmetric linear
functional on S, and m(x%) = 0 iff [x] = 0. The function ([x], [y]) with
[x] and [y] ranging over S, has the usual properties of an inner product.
Next, S, can be completed to a real Hilbert space H relative to the given
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inner product. For x € S,, we set =, for the operator on S, defined by
m°[¥] = [x o y]. Let x € S,, then
|x| = sup {|m(x)|: m € M} = sup {t: 1 € o(x)}

and o(x?) = [o(x)]? implies that |x2| = |x|2 (Gudder, 1965). Then for all
m’' e M, m'(| x| — x2) > 0, so that there is a z € X such that z2 = |x|?] —
x2. From this it follows that

m[y? o (| x[2] — x*)] = m(y*-2%) > 0

ie.,
m(y® o x?) < |x|*m(y?)
so that
o2 .. | L1112 = m(x ° y)*] < 2
"’7:: " S{lﬁ) " [y”lz Sgp m(y?) ] ”x”

Thus =,° can be uniquely extended to an operator on H. Let us denote by
w, this extension. Now let x, y, z€ S, and o, 8 € R, then

memy[z] = m [yoz]l = [xoyoz] = melz] = Tyexlz] = mym,[z]
Tax+pul2] = [(ex + By) o z] = efx o 2] + B[y o z] = em,[z] + Bm,[2]
so that w5 = e, + pm, and =, = 7,7, = ww,. Let ¢, H be the
class [I]. Then (¢o, 71do) = m(I o x) = m(x) for all x e S,.

In the following theorems we shall treat the relation between our joint
distributions and the type-1 joint distributions (Gudder, 1968).

Theorem 4. If x<> y, then xz(x)  xe(¥) = x(x) A x¢(¥).

Proof. x<» y implies that there is an observable u and real Borel func-
tions £, f, such that x = f,(), y = fa(v) (Gudder, 1965). Then

xe(®) © xe(¥) = x(fi(W)) ° xs(fo(W) = Xry 1 Wxs; 1 ()
= xr7 @) A X5 = xe(x) A x# ()
From Theorems 1, 2, and 4 it then follows that for compatible ob-
servables both joint distributions exist and are identical.

A logic is quite full if the statement m(b) = 1, whenever m(a) = 1
implies the statement a < b, a4, b € L (Gudder, 1966).

Theorem 5. Let x, y be bounded observables on a quite full logic.
If the joint distribution in a state m exists, then u(E x F) =

#X(E) A y(F)), E, F € B(R).
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Proof. If the joint distribution exists, then
m(x(¥) + xr(N2) = ulx=(t2) + x#(22)]"1{2})
= pf(ts; 1) x&x(t) + x#(ts) = 2} = W(E x F)
On the other hand, on a quite full logic,

Ixz(x) + xZ(MI{2D) = X(E) A y(F)
(Gudder, 1966), so that m{x(E) A y(F)] = w(E x F).

Theorem 6. Let L(H) be the logic of all closed subspaces of a com-
plex separable Hilbert space H. If the type-1 joint distribution
exists for the observables x, y in a state m, then

#(E x F) = m[x(E) A y(F)] = m[x(E) o y(F)]

Proof. Any state m on L(H) can be written in the formm = 3 r(®,,- ®,),
where {®;} is an orthonormal set of vectors in H and r, 2 0, > r, = 1.
Gudder (1968, Theorem 3.7) has proved that the type-1 joint distribution
exists if and only if x(E)y(F)®;, = y(F)x(E)®,, E,FcBR), i=1,2,....
Then x(E) y(F)®; = y(F)x(E)Y®; = x(E) A y(F)®;, so that m[x(E) A y(F)] =
21 ®i, x(E) A p(F)®) = 2 1Dy, X(E)y(F)®;) = 2 r{ Dy, x(E) o y(F)®)) =
m[x(E) o y(F)].

We note that from the existence of a measure p defined by p(E x F) =
mxe(x) o xr(¥)], E, F € B(R) it need not follow, in general, that there is a
joint distribution in the sense of Definition 1.

Theorem 7. Suppose that x and y are self-adjoint operators with a
pure point spectrum. Let @;, i = 1,2,... be the common eigen-
vectors of x and y. Then there exists a joint distribution of x and y
in the state m = > r(®;,- D).

Proof. Let A;, u; be the eigenvalues of x and y, respectively, correspond-
ing to the eigenstates @;, i = 1,2,.... Then

S0, = f(A)P;, (x + »)0; = 4 + w)0;
for any Borel function f, so that

f(x9 y)q)z = .f(’\ia l"'i)q)i

for each f(x, y) € S(x, y). Let us define the measure p by

MG) = 3 {r: (v ) € G}, G € BRY
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Then
mX(E) e y(F)] = m{x(E) A y(F)] = 2 {r: A, p) € E X F} = y(E x F)

and

m[f(x, y)] = Z rifQ, ) = J‘Rﬁ At 22 du(t,, t2)
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